

Overview

Modeling Electric Power Expansion
A Case Study from Turkey

Stochastic Optimization

Electric Power Expansion - standard

The Traditional Case

Minimize total cost =
$$\sum_{j=1}^{J} \sum_{v=1}^{T} fc_{jv} X_{jv} + \sum_{j=1}^{J} \sum_{t=1}^{T} \sum_{v=0}^{t} \sum_{s=1}^{S} vc_{jtv} L_{jtvs} \theta_{s}$$

Subject to $\sum_{j=1}^{J} \sum_{\nu=0}^{t} a_{j\nu} X_{j\nu} \ge D_{ts} (1+m) \qquad s = 1, \quad t = 1, ..., T$ $\sum_{j=1}^{J} \sum_{\nu=0}^{t} L_{jt\nu s} \ge D_{ts} \qquad s = 1, ..., S \quad t = 1, ..., T$ $L_{jt\nu s} \le a_{j\nu} X_{j\nu}$

Technological + Regulatory Constraints

Stochastic Optimization

Electric Power Expansion - stochastic

$$E_{t}(NPV) = \sum_{j=1}^{J} \sum_{\tau=t}^{T} \sum_{\nu=0}^{\tau} \sum_{s=1}^{S} E_{z_{\tau}}(P_{\tau}) \cdot L_{j\tau\nu s} \cdot \theta_{s}$$

$$- \sum_{j=1}^{J} \sum_{\nu=1}^{T} fc_{j\nu} \cdot X_{j\nu} - \sum_{j=1}^{J} \sum_{\tau=t}^{T} \sum_{\nu=0}^{\tau} \sum_{s=1}^{S} E_{z_{\tau}}(\nu c_{j\tau\nu}) \cdot L_{j\tau\nu s} \cdot \theta_{s}$$

S. to

$$\begin{split} \sum_{j=1}^{J} \sum_{\nu=0}^{\tau} L_{j\tau\nu s} &\geq E_{z_{\tau}} \left(D_{\tau s} \right) \qquad s = 1, \dots, S \qquad \tau = 1, \dots, T \\ vc_{j,\tau} &= \alpha_{0} + \sum_{i=1}^{p} \alpha_{i} vc_{\tau-i} + \sum_{i=0}^{q} \beta_{i} \varepsilon_{\tau-i} \\ \sum_{j=1}^{J} \sum_{\nu=0}^{\tau} a_{j\nu} X_{j\nu} &\geq E_{z_{\tau}} \left(D_{\tau s} \right) \cdot (1+m) \qquad s = 1, \ \tau = 1, \dots, T \\ L_{j\tau\nu s} &\leq a_{j\nu} X_{j\nu} \qquad , \qquad \sum_{s=1}^{S} L_{j\tau\nu s} \theta_{s} \leq b_{j} X_{j\nu} \end{split}$$

© Pr& Others Constraints

Energy Economics 30 (2008) 1882-1908

Energy Economics

www.elsevier.com/locate/eneco

A real options evaluation model for the diffusion prospects of new renewable power generation technologies

Gürkan Kumbaroğlu^a,*, Reinhard Madlener^b, Mustafa Demirel^a

 ^a Department of Industrial Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Turkey
 ^b Centre for Energy Policy and Economics (CEPE), Department of Management, Technology, and Economics, ETH Zurich, Zurichbergstrasse 18 (ZUE E), 8032 Zurich, Switzerland

Received 13 March 2006; received in revised form 3 October 2006; accepted 12 October 2006 Available online 28 November 2006

Outline

Introduction

- Theoretical Background
 - The Real Options Approach
 - Learning Curves and RET Adoption
- Model Description
- Empirical Analysis
 - The Turkish Electricity Supply Industry
 - Model Calibration
 - Results

Conclusions

Introduction

- Turkey on the way to EU membership
 - Recently ratified the UNFCCC, Kyoto in line
 - Great renewable energy potentials
- Uncertain prospects for the diffusion of RETs
 - High investment costs of RETs
 - Uncertainty due to electricity market restructuring
- Technology Adoption Modeling
 - Challenges on traditional investment planning OR models
 - Real Options approach to deal with uncertainty
 - Learning Curve theory to reflect RET cost reductions

Theoretical Background

- The Real Options Approach
 - > Dixit/Pindyck, 1994
 - Resolution of uncertainty over time, dynamic programming
 - > Crystal Ball[®] software (Mun, 2002)
 - Variety of applications to energy industry issues e.g. Ronn (2003), Frayer/Uludere (2001), Keppo/Lu (2003)
- Learning Curves and RET Adoption
 - Reduction in cost as a function of cumulative production
 - > Progress ratios, learning rates
 - Global progress ratios (Junginger et al., 2005)
 - > Many empirical studies on learning curves in energy research

e.g. Ibenholt 2002, Junginger et al. 2005, Kamp et al. 2004, Neij 1997/1999

Maximizing the Net Present Value (NPV)

$$NPV_{t}(X_{i,v=t}) = \max \begin{cases} \sum_{i}^{t+lt(i)+el(i)} p_{z}(1+r)^{-(z-t)} L_{i,z,v=t} \theta_{i,z,v=t} \\ -\left\{ \forall \sum_{i} L_{i,z,v} \theta_{i,z,v} \ge d_{z} \mid \sum_{i}^{t+lt(i)+el(i)} p_{z}(1+r)^{-(z-t)} \left\{ L_{i,z,v=t} \theta_{i,z,v=t} - d_{z} \right\} \right\} \\ -\sum_{i}^{t+lt(i)+el(i)} vc_{i,z,v=t} (1+r)^{-(z-t)} L_{i,z,v=t} \theta_{i,z,v=t} \\ -\sum_{i}^{t} fc_{i,v=t} X_{i,v=t} \\ +\frac{1}{1+r} E_{t} \left(NPV_{t+1}(X_{i,v=t+1}) \right) \end{cases}$$

Variables/parameters:	d peak power demand	Indices:
<i>p</i> el. price	<i>vc</i> var. cost	<i>i</i> plant type
r real interest rate	fc fixed cost	<i>z</i> year
L load	It construction lead time	v vintage
θ duration hours	el economic lifetime	<i>t</i> time

Meeting peak load demand

$$\sum_{i} \sum_{v=z-lt(i)-el(i)}^{z-lt(i)} L_{i,z,v} \theta_{i,z,v} \ge d_z (1+m)$$

$$\forall t+lt(i)+el(i) \ge z \ge t$$

 ✓ price-elastic demand for electricity (elasticity increases with degree of market opening)

$$d_z(p_z) = \alpha p_z^{\varepsilon_z}$$

Considering capacity availability

$$L_{i,z,v} \leq a_i X_{i,v}$$

$$L_{i,z,v} \frac{\theta_{i,z,v}}{8760} \le cf_i X_{i,v}$$

 $\forall t + lt(i) + el(i) \ge z \ge t + lt(i), v \le t$

Introducing uncertainty

$$\delta p_z = p_{z-1} \left(\mu \, \delta z \, + \, \sigma \, \varepsilon \sqrt{\delta z} \right)$$

$$\delta v c_{i,z,v} = v c_{i,z-1,v} \left(\mu \, \delta z + \sigma \, \varepsilon \sqrt{\delta z} \right)$$

Integrating technological learning

$$fc_{i,v} = fc_{i,v=2000} CC^{-li}$$

$$PR=2^{-li}$$

The Turkish Electricity Supply Industry

Figure 1. Development of electricity generating capacity in Turkey, 1984-2001 (Source: TEIAS, 2002)

Table 1. Renewable electricity potentials and current and expected RET installations in Turkey

Energy	Theoretical	Technical	Economic	Current	Expected contribution / Policy goa		
source	potential po	potential potential	(2001) installation	2005	2010	2020	
Hydro	49 GW	216 TWh	35 GW	11.6 GW	14.8 GW	65 - 85	29 - 35 GW
power	430 TWh		125 TWh	24 TWh	48 TWh	TWh	98 - 110
						Goal: 100%	TWh
						of potential	
Wind power	88 GW	83 GW-	10 - 20	18.9 MW	643 MW	0.6 - 4 GW	1 GW
	>400 TWh	124 - 166	GW	62.4 TWh			
		TWh					
Geothermal	4.5 GW _e tot.	2.0 GW _e		17.5 MW	0.04 - 0.15	0.3 - 0.5	1 GW _e
power				89.6 GWh	GW _e	GW _e	96 TWh
					22 I Wh	44 I Wh	
Solar	102 TWh		102 TWh	1.5 TWh		Goal:	9 TWh
	proven					40 MW _e	
D :						(PV)	
Biogas	12 - 23 I Wh			5.4 MW _e	10 MW _e		
					(Biogas-		
D'	407.070				vvaste)		
Biomass	197 - 372			91 MW		86 I VVN	87 I VVN
	IVVN						
							20.014
I otal REI				104 I Wh		25 GW	30 GW

Data sources: see paper

Model Calibration

Figure 2. Variable cost projections for existing power generation technologies, 2001-2025

Model Calibration

Figure 3. Electricity price projections, 2001-2025

Table 3. Candidate power generation technologies: costs, assumed availability, learning rates and construction lead times

Technology	Inv. cost (\$/kW)	Annual fixed O&M cost (\$/kW)	Availability factor	Capacity factor	Learning rate	Construction lead time (years)
Conventional						
Coal FBC CHP plant	3600	144	0.80	0.70	0.05	4
Pulverised coal power plant	1488	44.4	0.75	0.80	0.05	4
Integrated coal gasif. power plant	1260	64.8	0.75	0.80	0.05	4
Oil fired power plant	1032	28.8	0.75	0.80	0.01	3
Natural gas CC power plant	972	25.2	0.75	0.65	0.01	3
Gas turbine CHP plant	912	13.2	0.80	0.60	0.01	3
Lignite fired power plant	1728	44.4	0.75	0.75	0.01	4
Integrated lignite gasif. power plant	1920	37.2	0.75	0.45	0.05	4
Nuclear LWR power plant	2928	64.2	0.75	0.95	0.01	6
Renewable						
Biomass gasifier dedic. STAG (NH)	2448	240	0.75	0.80	0.15	3
Biomass gasifier SOFC*	3120	312	1.00	0.80	0.15	3
Biomass gas turbine CHP	2040	51	0.80	0.80	0.15	3
Solar PV	6000	24.6	0.90	0.15	0.20	2
Large onshore wind turbine	1140	21.6	0.90	0.25	0.1	1
Large onshore wind turbine storage	1632	26.4	0.90	0.25	0.1	1
Large offshore wind turbine storage	2340	37.2	0.90	0.25	0.08	2
Low head hydro	3420	30	0.80	0.47		10
Medium and high head hydro	2280	22.8	0.85	0.34		10
Hydro pumped storage	3420	45.6	0.92	0.40		10
Geothermal power plant	1236	31.2	0.70	0.90		2

© Prof. G.Kumbaroğlu, Boğaziçi University

5th IAEE Summer School China July 2019

Model Calibration

Table 4. Scenario assumptions

Scenario	Upper bound on capacity addition per technology	Price elasticity $(2020 \rightarrow 2025)$	Technology adoption restrictions
FLEX	2 GW p.a.	-0.01 → -0.05	No restriction
NF1	1 GW p.a.	-0.01 → -0.02	No restriction
NF2	1 GW p.a.	$-0.01 \rightarrow -0.02$	Natgas/Total Cap. $\leq 40\%$
NF3	1 GW p.a.	-0.01 → -0.02	Wind Turbine Licensing
NF4	1 GW p.a.	-0.01 → -0.02	Draft Law (8% Renew.)

Results

Figure 4. Composition of annual capacity additions, 2008-2025

Results

Figure 5. Percentage share of renewables among new capacity additions, 2008-2025

Conclusions

- RO dynamic programming formulation & learning curve integration for power generation investment planning
- The Case of Turkey
 - Diffusion of renewable energy technologies other than geothermal occurs only if targeted policies/promotion exists
 - ✓ Long lead times discourage hydropower investments under uncertainty
 - ✓ Natural gas CC remains the most attractive option
 - Draft renewable energy law under discussion induces technological learning and can significantly affect the evolution of the technological structure in the power sector
 - ✓ Opportunities for technological learning via Kyoto flexibility mechanisms